Close to-cognate tRNAs improve the effectivity and precision of pseudouridine-mediated readthrough of untimely termination codons

Photo of author

By Calvin S. Nelson


  • Krawczak, M., Ball, E. V. & Cooper, D. N. Neighboring-nucleotide results on the charges of germ-line single-base-pair substitution in human genes. Am. J. Hum. Genet. 63, 474–488 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations inflicting human genetic illness. Hum. Mutat. 29, 1037–1047 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, S. H. et al. Faulty intracellular transport and processing of CFTR is the molecular foundation of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballabio, A. & Gieselmann, V. Lysosomal problems: from storage to mobile harm. Biochim. Biophys. Acta. 1793, 684–696 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, M., Frizzell, R. A. & Bedwell, D. M. Aminoglycoside antibiotics restore CFTR operate by overcoming untimely cease mutations. Nat. Med. 2, 467–469 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welch, E. M. et al. PTC124 targets genetic problems attributable to nonsense mutations. Nature 447, 87–91 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Advances in therapeutic use of a drug-stimulated translational readthrough of untimely termination codons. Mol. Med. 24, 25 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lueck, J. D. et al. Engineered switch RNAs for suppression of untimely termination codons. Nat. Commun. 10, 822 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Temple, G. F., Dozy, A. M., Roy, Ok. L. & Kan, Y. W. Building of a purposeful human suppressor tRNA gene: an strategy to gene remedy for β-thalassaemia. Nature 296, 537–540 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiselev, A. V. et al. Suppression of nonsense mutations within the Dystrophin gene by a suppressor tRNA gene. Mol. Biol. (Mosk). 36, 43–47 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, D. B. T. et al. RNA enhancing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merkle, T. et al. Exact RNA enhancing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu, L. et al. Programmable RNA enhancing by recruiting endogenous ADAR utilizing engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katrekar, D. et al. In vivo RNA enhancing of level mutations through RNA-guided adenosine deaminases. Nat. Strategies 16, 239–242 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, P. et al. Environment friendly and exact enhancing of endogenous transcripts with SNAP-tagged ADARs. Nat. Strategies 15, 535–538 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, X. et al. Programmable C-to-U RNA enhancing utilizing the human APOBEC3A deaminase. EMBO J. 39, e104741 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA enhancing. Science 365, 382–386 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rauch, S. et al. Programmable RNA-guided RNA effector proteins constructed from human elements. Cell 178, 122–134 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reautschnig, P. et al. CLUSTER information RNAs allow exact and environment friendly RNA enhancing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, Z. et al. Engineered round ADAR-recruiting RNAs improve the effectivity and constancy of RNA enhancing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katrekar, D. et al. Environment friendly in vitro and in vivo RNA enhancing through recruitment of endogenous ADARs utilizing round information RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. Programmable RNA enhancing with compact CRISPR–Cas13 programs from uncultivated microbes. Nat. Strategies 18, 499–506 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress untimely termination codons. Mol. Cell 83, 139–155 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adachi, H. et al. Focused pseudouridylation: an strategy for suppressing nonsense mutations in illness genes. Mol. Cell 83, 637–651 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montes, M. & Martinez, N. M. Rewriting the message: harnessing RNA pseudouridylation to deal with illness. Mol. Cell 83, 503–506 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karijolich, J. & Yu, Y. T. Changing nonsense codons into sense codons by focused pseudouridylation. Nature 474, 395–398 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of switch RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geslain, R. & Pan, T. Practical evaluation of human tRNA isodecoders. J. Mol. Biol. 396, 821–831 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Quantitative profiling of pseudouridylation panorama within the human transcriptome. Nat. Chem. Biol. 19, 1185–1195 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotha, Ok. & Clancy, J. P. Ivacaftor remedy of cystic fibrosis sufferers with the G551D mutation: a evaluation of the proof. Ther. Adv. Respir. Dis. 7, 288–296 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerem, E. Pharmacologic remedy for cease mutations: how a lot CFTR exercise is sufficient? Curr. Opin. Pulm. Med. 10, 547–552 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bunge, S. et al. Genotype-phenotype correlations in mucopolysaccharidosis sort I utilizing enzyme kinetics, immunoquantification and in vitro turnover research. Biochim. Biophys. Acta 1407, 249–256 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oussoren, E. et al. Residual α-L-iduronidase exercise in fibroblasts of delicate to extreme Mucopolysaccharidosis sort I sufferers. Mol. Genet. Metab. 109, 377–381 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, H., Li, Ok., Liu, C. & Yi, C. Regulation and features of non-m(6)A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24, 714–731 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kierzek, E. et al. The contribution of pseudouridine to stabilities and construction of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keeling, Ok. M., Xue, X., Gunn, G. & Bedwell, D. M. Therapeutics based mostly on cease codon readthrough. Annu. Rev. Genomics Hum. Genet. 15, 371–394 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClain, W. H., Foss, Ok., Jenkins, R. A. & Schneider, J. Nucleotides that decide Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc. Natl Acad. Sci. USA 87, 9260–9264 (1990).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giege, R. & Eriani, G. The tRNA identification panorama for aminoacylation and past. Nucleic Acids Res. 51, 1528–1570 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pechmann, S. & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20, 237–243 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porter, J. J., Heil, C. S. & Lueck, J. D. Therapeutic promise of engineered nonsense suppressor tRNAs. Wiley Interdiscip. Rev. RNA 12, e1641 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, T. P. et al. Focused supply of antisense oligonucleotides to hepatocytes utilizing triantennary N-acetyl galactosamine improves efficiency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. et al. Environment friendly and quantitative high-throughput tRNA sequencing. Nat. Strategies 12, 835–837 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, B. et al. Transposase-assisted tagmentation of RNA/DNA hybrid duplexes. eLife 9, e54919 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing knowledge in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Tendencies Genet. 29, 569–574 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hounkpe, B. W., Chenou, F., de Lima, F. & De Paula, E. V. HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining large RNA-seq datasets. Nucleic Acids Res. 49, D947–D955 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in distinctive molecular identifiers to enhance quantification accuracy. Genome Res. 27, 491–499 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Quick and correct brief learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, N. et al. Close to-cognate tRNAs improve the effectivity and precision of pseudouridine-mediated readthrough of untimely termination codons. GEO. www.ncbi.nlm.nih.gov/geo/question/acc.cgi?acc=GSE237633 (2024).

  • Leave a Comment