Krawczak, M., Ball, E. V. & Cooper, D. N. Neighboring-nucleotide results on the charges of germ-line single-base-pair substitution in human genes. Am. J. Hum. Genet. 63, 474–488 (1998).
Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations inflicting human genetic illness. Hum. Mutat. 29, 1037–1047 (2008).
Cheng, S. H. et al. Faulty intracellular transport and processing of CFTR is the molecular foundation of most cystic fibrosis. Cell 63, 827–834 (1990).
Ballabio, A. & Gieselmann, V. Lysosomal problems: from storage to mobile harm. Biochim. Biophys. Acta. 1793, 684–696 (2009).
Howard, M., Frizzell, R. A. & Bedwell, D. M. Aminoglycoside antibiotics restore CFTR operate by overcoming untimely cease mutations. Nat. Med. 2, 467–469 (1996).
Welch, E. M. et al. PTC124 targets genetic problems attributable to nonsense mutations. Nature 447, 87–91 (2007).
Dabrowski, M., Bukowy-Bieryllo, Z. & Zietkiewicz, E. Advances in therapeutic use of a drug-stimulated translational readthrough of untimely termination codons. Mol. Med. 24, 25 (2018).
Lueck, J. D. et al. Engineered switch RNAs for suppression of untimely termination codons. Nat. Commun. 10, 822 (2019).
Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022).
Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).
Temple, G. F., Dozy, A. M., Roy, Ok. L. & Kan, Y. W. Building of a purposeful human suppressor tRNA gene: an strategy to gene remedy for β-thalassaemia. Nature 296, 537–540 (1982).
Kiselev, A. V. et al. Suppression of nonsense mutations within the Dystrophin gene by a suppressor tRNA gene. Mol. Biol. (Mosk). 36, 43–47 (2002).
Cox, D. B. T. et al. RNA enhancing with CRISPR–Cas13. Science 358, 1019–1027 (2017).
Merkle, T. et al. Exact RNA enhancing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).
Qu, L. et al. Programmable RNA enhancing by recruiting endogenous ADAR utilizing engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).
Katrekar, D. et al. In vivo RNA enhancing of level mutations through RNA-guided adenosine deaminases. Nat. Strategies 16, 239–242 (2019).
Vogel, P. et al. Environment friendly and exact enhancing of endogenous transcripts with SNAP-tagged ADARs. Nat. Strategies 15, 535–538 (2018).
Huang, X. et al. Programmable C-to-U RNA enhancing utilizing the human APOBEC3A deaminase. EMBO J. 39, e104741 (2020).
Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA enhancing. Science 365, 382–386 (2019).
Rauch, S. et al. Programmable RNA-guided RNA effector proteins constructed from human elements. Cell 178, 122–134 (2019).
Reautschnig, P. et al. CLUSTER information RNAs allow exact and environment friendly RNA enhancing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).
Yi, Z. et al. Engineered round ADAR-recruiting RNAs improve the effectivity and constancy of RNA enhancing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).
Katrekar, D. et al. Environment friendly in vitro and in vivo RNA enhancing through recruitment of endogenous ADARs utilizing round information RNAs. Nat. Biotechnol. 40, 938–945 (2022).
Xu, C. et al. Programmable RNA enhancing with compact CRISPR–Cas13 programs from uncultivated microbes. Nat. Strategies 18, 499–506 (2021).
Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).
Music, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress untimely termination codons. Mol. Cell 83, 139–155 (2023).
Adachi, H. et al. Focused pseudouridylation: an strategy for suppressing nonsense mutations in illness genes. Mol. Cell 83, 637–651 (2023).
Montes, M. & Martinez, N. M. Rewriting the message: harnessing RNA pseudouridylation to deal with illness. Mol. Cell 83, 503–506 (2023).
Karijolich, J. & Yu, Y. T. Changing nonsense codons into sense codons by focused pseudouridylation. Nature 474, 395–398 (2011).
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of switch RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
Geslain, R. & Pan, T. Practical evaluation of human tRNA isodecoders. J. Mol. Biol. 396, 821–831 (2010).
Zhang, M. et al. Quantitative profiling of pseudouridylation panorama within the human transcriptome. Nat. Chem. Biol. 19, 1185–1195 (2023).
Kotha, Ok. & Clancy, J. P. Ivacaftor remedy of cystic fibrosis sufferers with the G551D mutation: a evaluation of the proof. Ther. Adv. Respir. Dis. 7, 288–296 (2013).
Kerem, E. Pharmacologic remedy for cease mutations: how a lot CFTR exercise is sufficient? Curr. Opin. Pulm. Med. 10, 547–552 (2004).
Bunge, S. et al. Genotype-phenotype correlations in mucopolysaccharidosis sort I utilizing enzyme kinetics, immunoquantification and in vitro turnover research. Biochim. Biophys. Acta 1407, 249–256 (1998).
Oussoren, E. et al. Residual α-L-iduronidase exercise in fibroblasts of delicate to extreme Mucopolysaccharidosis sort I sufferers. Mol. Genet. Metab. 109, 377–381 (2013).
Solar, H., Li, Ok., Liu, C. & Yi, C. Regulation and features of non-m(6)A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24, 714–731 (2023).
Kierzek, E. et al. The contribution of pseudouridine to stabilities and construction of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).
Keeling, Ok. M., Xue, X., Gunn, G. & Bedwell, D. M. Therapeutics based mostly on cease codon readthrough. Annu. Rev. Genomics Hum. Genet. 15, 371–394 (2014).
McClain, W. H., Foss, Ok., Jenkins, R. A. & Schneider, J. Nucleotides that decide Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc. Natl Acad. Sci. USA 87, 9260–9264 (1990).
Giege, R. & Eriani, G. The tRNA identification panorama for aminoacylation and past. Nucleic Acids Res. 51, 1528–1570 (2023).
Pechmann, S. & Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat. Struct. Mol. Biol. 20, 237–243 (2013).
Porter, J. J., Heil, C. S. & Lueck, J. D. Therapeutic promise of engineered nonsense suppressor tRNAs. Wiley Interdiscip. Rev. RNA 12, e1641 (2021).
Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).
Prakash, T. P. et al. Focused supply of antisense oligonucleotides to hepatocytes utilizing triantennary N-acetyl galactosamine improves efficiency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).
Zheng, G. et al. Environment friendly and quantitative high-throughput tRNA sequencing. Nat. Strategies 12, 835–837 (2015).
Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).
Lu, B. et al. Transposase-assisted tagmentation of RNA/DNA hybrid duplexes. eLife 9, e54919 (2020).
Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).
Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing knowledge in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).
Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Tendencies Genet. 29, 569–574 (2013).
Hounkpe, B. W., Chenou, F., de Lima, F. & De Paula, E. V. HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining large RNA-seq datasets. Nucleic Acids Res. 49, D947–D955 (2021).
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in distinctive molecular identifiers to enhance quantification accuracy. Genome Res. 27, 491–499 (2017).
Li, H. & Durbin, R. Quick and correct brief learn alignment with Burrows–Wheeler remodel. Bioinformatics 25, 1754–1760 (2009).
Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
Luo, N. et al. Close to-cognate tRNAs improve the effectivity and precision of pseudouridine-mediated readthrough of untimely termination codons. GEO. www.ncbi.nlm.nih.gov/geo/question/acc.cgi?acc=GSE237633 (2024).