Doudna, J. A. The promise and problem of therapeutic genome modifying. Nature 578, 229–236 (2020).
Pacesa, M., Pelea, O. & Jinek, M. Previous, current, and way forward for CRISPR genome modifying applied sciences. Cell 187, 1076–1100 (2024).
Zhong, G. et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 38, 169–175 (2020).
Monteys, A. M. et al. Regulated management of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).
Liu, R. et al. Optogenetic management of RNA operate and metabolism utilizing engineered light-switchable RNA-binding proteins. Nat. Biotechnol. 40, 779–786 (2022).
Pfeiffer, L. S. & Stafforst, T. Precision RNA base modifying with engineered and endogenous effectors. Nat. Biotechnol. 41, 1526–1542 (2023).
Sales space, B. J. et al. RNA modifying: increasing the potential of RNA therapeutics. Mol. Ther. 31, 1533–1549 (2023).
Tune, J., Zhuang, Y. & Yi, C. Programmable RNA base modifying through focused modifications. Nat. Chem. Biol. 20, 277–290 (2024).
Merkle, T. et al. Exact RNA modifying by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).
Qu, L. et al. Programmable RNA modifying by recruiting endogenous ADAR utilizing engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).
Reautschnig, P. et al. CLUSTER information RNAs allow exact and environment friendly RNA modifying with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).
Katrekar, D. et al. Environment friendly in vitro and in vivo RNA modifying through recruitment of endogenous ADARs utilizing round information RNAs. Nat. Biotechnol. 40, 938–945 (2022).
Vogel, P. et al. Environment friendly and exact modifying of endogenous transcripts with SNAP-tagged ADARs. Nat. Strategies 15, 535–538 (2018).
Montiel-Gonzalez, M. F., Vallecillo-Viejo, I., Yudowski, G. A. & Rosenthal, J. J. C. Correction of mutations throughout the cystic fibrosis transmembrane conductance regulator by site-directed RNA modifying. Proc. Natl Acad. Sci. USA 110, 18285–18290 (2013).
Han, W. et al. Programmable RNA base modifying with a single gRNA-free enzyme. Nucleic Acids Res. 50, 9580–9595 (2022).
Cox, D. B. T. et al. RNA modifying with CRISPR-Cas13. Science 358, 1019–1027 (2017).
Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).
Xu, C. et al. Programmable RNA modifying with compact CRISPR–Cas13 programs from uncultivated microbes. Nat. Strategies 18, 499–506 (2021).
Rauch, S. et al. Programmable RNA-guided RNA effector proteins constructed from human elements. Cell 178, 122–134.e12 (2019).
Rauch, S., Jones, Okay. A. & Dickinson, B. C. Small molecule-inducible RNA-targeting programs for temporal management of RNA regulation. ACS Cent. Sci. 6, 1987–1996 (2020).
Stroppel, A. S., Lappalainen, R. & Stafforst, T. Controlling site-directed RNA modifying by chemically induced dimerization. Chemistry 27, 12300–12304 (2021).
Zhang, Y. et al. Mild-triggered site-directed RNA modifying by endogenous ADAR1 with photolabile information RNA. Cell Chem. Biol. 30, 672–682.e5 (2023).
Hanswillemenke, A., Kuzdere, T., Vogel, P., Jékely, G. & Stafforst, T. Web site-directed RNA modifying in vivo could be triggered by the light-driven meeting of a synthetic riboprotein. J. Am. Chem. Soc. 137, 15875–15881 (2015).
Bennett, C. F., Baker, B. F., Pham, N., Swayze, E. & Geary, R. S. Pharmacology of antisense medication. Annu. Rev. Pharmacol. Toxicol. 57, 81–105 (2017).
Yu, J. et al. Programmable RNA base modifying with photoactivatable CRISPR-Cas13. Nat. Commun. 15, 673 (2024).
Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic management of mobile proteins. Nat. Commun. 6, 6256 (2015).
Katrekar, D. et al. Complete interrogation of the ADAR2 deaminase area for engineering enhanced RNA modifying exercise and specificity. Elife 11, 1–19 (2022).
Wong, S. Okay., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).
Konermann, S. et al. Transcriptome engineering with RNA-targeting kind VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).
Paulmurugan, R. & Gambhir, S. S. Combinatorial library screening for creating an improved split-firefly luciferase fragment-assisted complementation system for learning protein–protein interactions. Anal. Chem. 79, 2346–2353 (2007).
Li, H. et al. Environment friendly photoactivatable Dre recombinase for cell type-specific spatiotemporal management of genome engineering within the mouse. Proc. Natl Acad. Sci. USA 117, 33426–33435 (2020).
Li, H. et al. Secure transgenic mouse pressure with enhanced photoactivatable Cre recombinase for spatiotemporal genome manipulation. Adv. Sci. 9, 1–12 (2022).
Kuttan, A. & Bass, B. L. Mechanistic insights into editing-site specificity of ADARs. Proc. Natl Acad. Sci. USA 109, E3295–E3304 (2012).
Wang, X. et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv. Sci. 10, 1–8 (2023).
Benedetti, L. et al. Optimized vivid-derived magnets photodimerizers for subcellular optogenetics in mammalian cells. Elife 9, 1–49 (2020).
Martins-Dias, P. & Romão, L. Nonsense suppression therapies in human genetic illnesses. Cell. Mol. Life Sci. 78, 4677–4701 (2021).
Luo, N. et al. Close to-cognate tRNAs enhance the effectivity and precision of pseudouridine-mediated readthrough of untimely termination codons. Nat. Biotechnol. 43, 114–123 (2025).
Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).
Yi, Z. et al. Engineered round ADAR-recruiting RNAs enhance the effectivity and constancy of RNA modifying in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).
MacDonald, B. T., Tamai, Okay. & He, X. Wnt/β-catenin signaling: elements, mechanisms, and illnesses. Dev. Cell 17, 9–26 (2009).
Liu, C. et al. Management of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).
Kay, M. A., He, C.-Y. & Chen, Z.-Y. A strong system for manufacturing of minicircle DNA vectors. Nat. Biotechnol. 28, 1287–1289 (2010).
Lamb, Y. N. & Hoy, S. M. Eftrenonacog alfa: a evaluate in haemophilia B. Medicine 83, 807–818 (2023).
Nathwani, A. C. et al. Lengthy-term security and efficacy of issue IX gene remedy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).
George, L. A. et al. Hemophilia B gene remedy with a high-specific-activity issue IX variant. N. Engl. J. Med. 377, 2215–2227 (2017).
Kaczmarek, R. & Herzog, R. W. Remedy-induced hemophilic thrombosis? Mol. Ther. 30, 505–506 (2022).
Simioni, P. et al. X-linked thrombophilia with a mutant issue IX (issue IX Padua). N. Engl. J. Med. 361, 1671–1675 (2009).
Guan, Y. et al. CRISPR/Cas9‐mediated somatic correction of a novel coagulator issue IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 8, 477–488 (2016).
Anadón, C. et al. Gene amplification-associated overexpression of the RNA modifying enzyme ADAR1 enhances human lung tumorigenesis. Oncogene 35, 4407–4413 (2016).
Teoh, P. J. et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 132, 1304–1317 (2018).
Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced security. Nat. Nanotechnol. 16, 1424–1434 (2021).
Huang, Z. et al. Engineering light-controllable CAR T cells for most cancers immunotherapy. Sci. Adv. 6, 1–14 (2020).
Bansal, A., Shikha, S. & Zhang, Y. In direction of translational optogenetics. Nat. Biomed. Eng. 7, 349–369 (2023).
Zhou, Y. et al. A small and extremely delicate purple/far-red optogenetic swap for functions in mammals. Nat. Biotechnol. 40, 262–272 (2022).
Kuwasaki, Y. et al. A purple light-responsive photoswitch for deep tissue optogenetics. Nat. Biotechnol. 40, 1672–1679 (2022).
Bonger, Okay. M., Chen, L., Liu, C. W. & Wandless, T. J. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat. Chem. Biol. 7, 531–537 (2011).
Hwang, G.-H. et al. Internet-based design and evaluation instruments for CRISPR base modifying. BMC Bioinformatics 19, 542 (2018).
Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene remedy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194220 (2025).
Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene remedy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194292 (2025).
Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene remedy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1197542 (2025).
Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene remedy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1207784 (2025).
Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene remedy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194549 (2025).
Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene remedy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1207789 (2025).