Li, W. et al. Androgenetic haploid embryonic stem cells produce dwell transgenic mice. Nature 490, 407–411 (2012).
Yang, H. et al. Era of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149, 605–617 (2012).
Li, W. et al. Genetic modification and screening in rat utilizing haploid embryonic stem cells. Cell Stem Cell 14, 404–414 (2014).
Lin, J. C. & Van Eenennaam, A. L. Electroporation-mediated genome modifying of livestock zygotes. Entrance. Genet. 12, 648482 (2021).
Hai, T., Teng, F., Guo, R., Li, W. & Zhou, Q. One-step era of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24, 372–375 (2014).
He, W., Chen, J. & Gao, S. Mammalian haploid stem cells: institution, engineering and functions. Cell. Mol. Life Sci. 76, 2349–2367 (2019).
Elling, U. et al. Ahead and reverse genetics by derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).
Lu, J. et al. Construction-activity relationship research of small-molecule inhibitors of Wnt response. Bioorg. Med. Chem. Lett. 19, 3825–3827 (2009).
Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).
Smith, A. Formative pluripotency: the manager section in a developmental continuum. Improvement 144, 365–373 (2017).
Graf, A. et al. Fantastic mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl Acad. Sci. USA 111, 4139–4144 (2014).
Jiang, Z. et al. Transcriptional profiles of bovine in vivo pre-implantation growth. BMC Genomics 15, 756 (2014).
Bogliotti, Y. S. et al. Environment friendly derivation of steady primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl Acad. Sci. USA 115, 2090–2095 (2018).
Zhao, L. et al. Institution of bovine expanded potential stem cells. Proc. Natl Acad. Sci. USA 118, e2018505118 (2021).
Zhong, C. et al. CRISPR-Cas9-mediated genetic screening in mice with haploid embryonic stem cells carrying a information RNA library. Cell Stem Cell 17, 221–232 (2015).
Yang, L., Music, L., Liu, X., Bai, L. & Li, G. KDM6A and KDM6B play contrasting roles in nuclear switch embryos revealed by MERVL reporter system. EMBO Rep. 19, e46240 (2018).
Czernik, M., Iuso, D., Toschi, P., Khochbin, S. & Loi, P. Reworking somatic nuclei by way of exogenous expression of protamine 1 to create spermatid-like constructions for somatic nuclear switch. Nat. Protoc. 11, 2170–2188 (2016).
He, W. et al. Decreased self-diploidization and improved survival of semi-cloned mice produced from androgenetic haploid embryonic stem cells by overexpression of Dnmt3b. Stem Cell Rep. 10, 477–493 (2018).
Anzalone, A. V. et al. Search-and-replace genome modifying with out double-strand breaks or donor DNA. Nature 576, 149–157 (2019).
Rodgers, B. D. & Garikipati, D. Ok. Medical, agricultural, and evolutionary biology of myostatin: a comparative evaluation. Endocr. Rev. 29, 513–534 (2008).
Irie, N. et al. SOX17 is a vital specifier of human primordial germ cell destiny. Cell 160, 253–268 (2015).
Ishii, T. & Pera, R. A. Creating human germ cells for unmet reproductive wants. Nat. Biotechnol. 34, 470–473 (2016).
Hwang, Y. S. et al. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nat. Commun. 11, 5656 (2020).
He, Z. Q. et al. Era of mouse haploid somatic cells by small molecules for genome-wide genetic screening. Cell Rep. 20, 2227–2237 (2017).
Takahashi, S. et al. Induction of the G2/M transition stabilizes haploid embryonic stem cells. Improvement 141, 3842–3847 (2014).
Gao, G. et al. Transcriptome-wide evaluation of the SCNT bovine irregular placenta throughout mid- to late gestation. Sci. Rep. 9, 20035 (2019).
Cheng, R. et al. Modification of different splicing in bovine somatic cell nuclear switch embryos utilizing engineered CRISPR-Cas13d. Sci. China Life Sci. 65, 2257–2268 (2022).
Kinoshita, M. et al. Pluripotent stem cells associated to embryonic disc exhibit frequent self-renewal necessities in various livestock species. Improvement 148, dev199901 (2021).
Kim, H. et al. Modulation of beta-catenin operate maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nat. Commun. 4, 2403 (2013).
Ross, P. J. & Cibelli, J. B. Bovine somatic cell nuclear switch. Strategies Mol. Biol. 636, 155–177 (2010).
Zhang, J. et al. Dissecting the molecular options of bovine-arrested eight-cell embryos utilizing single-cell multi-omics sequencingdagger. Biol. Reprod. 108, 871–886 (2023).
Alberio, R., Motlik, J., Stojkovic, M., Wolf, E. & Zakhartchenko, V. Habits of M-phase synchronized blastomeres after nuclear switch in cattle. Mol. Reprod. Dev. 57, 37–47 (2000).
German, S. D., Lee, J. H., Campbell, Ok. H., Sweetman, D. & Alberio, R. Actin depolymerization is related to meiotic acceleration in cycloheximide-treated ovine oocytes. Biol. Reprod. 92, 103 (2015).
Yang, L. et al. Transient Dux expression facilitates nuclear switch and induced pluripotent stem cell reprogramming. EMBO Rep. 21, e50054 (2020).
Zhou, Q. et al. Era of fertile cloned rats by regulating oocyte activation. Science 302, 1179 (2003).
Furusawa, T. et al. Traits of bovine inside cell mass-derived cell traces and their destiny in chimeric conceptuses. Biol. Reprod. 89, 28 (2013).
Ying, Q. L. et al. The bottom state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).
Takashima, Y. et al. Resetting transcription issue management circuitry towards ground-state pluripotency in human. Cell 158, 1254–1269 (2014).
Theunissen, T. W. et al. Systematic identification of tradition circumstances for induction and upkeep of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014).
Bao, S. et al. Derivation of hypermethylated pluripotent embryonic stem cells with excessive efficiency. Cell Res. 28, 22–34 (2018).
Yang, Y. et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic efficiency. Cell 169, 243–257 (2017).
Yang, J. et al. Institution of mouse expanded potential stem cells. Nature 550, 393–397 (2017).
Gao, X. et al. Institution of porcine and human expanded potential stem cells. Nat. Cell Biol. 21, 687–699 (2019).
Vilarino, M. et al. Derivation of sheep embryonic stem cells underneath optimized circumstances. Replica 160, 761–772 (2020).
Oh, S. Ok. et al. Strategies for growth of human embryonic stem cells. Stem Cells 23, 605–609 (2005).
De Los Angeles, A., Okamura, D. & Wu, J. Extremely environment friendly derivation of pluripotent stem cells from mouse preimplantation and postimplantation embryos in serum-free circumstances. Strategies Mol. Biol. 2005, 29–36 (2019).
Ludwig, T. E. et al. Feeder-independent tradition of human embryonic stem cells. Nat. Strategies 3, 637–646 (2006).
Zhang, X. M. et al. In vitro growth of human sperm by nuclear switch. Cell Res. 30, 356–359 (2020).
Zhong, C. et al. Era of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical elimination of male pronucleus. Cell Res. 26, 743–746 (2016).
Elling, U. et al. Derivation and upkeep of mouse haploid embryonic stem cells. Nat. Protoc. 14, 1991–2014 (2019).
Shirasawa, A. et al. Environment friendly derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J. Reprod. Dev. 70, 82–95 (2024).
Ross, P. J. et al. Activation of bovine somatic cell nuclear switch embryos by PLCZ cRNA injection. Replica 137, 427–437 (2009).
Owen, J. R. et al. One-step era of a focused knock-in calf utilizing the CRISPR-Cas9 system in bovine zygotes. BMC Genomics 22, 118 (2021).
Bustin, S. A. et al. The MIQE tips: minimal info for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).
Hajkova, P. et al. DNA-methylation evaluation by the bisulfite-assisted genomic sequencing methodology. Strategies Mol. Biol. 200, 143–154 (2002).
Xie, Y. et al. An episomal vector-based CRISPR/Cas9 system for extremely environment friendly gene knockout in human pluripotent stem cells. Sci. Rep. 7, 2320 (2017).
Chow, R. D., Chen, J. S., Shen, J. & Chen, S. An internet instrument for the design of prime-editing information RNAs. Nat. Biomed. Eng. 5, 190–194 (2021).
Palazzese, L., Czernik, M., Iuso, D., Toschi, P. & Loi, P. Nuclear quiescence and histone hyper-acetylation collectively enhance protamine-mediated nuclear transforming in sheep fibroblasts. PLoS ONE 13, e0193954 (2018).
Grobet, L. et al. A deletion within the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17, 71–74 (1997).
Clop, A. et al. A mutation creating a possible illegitimate microRNA goal website within the myostatin gene impacts muscularity in sheep. Nat. Genet. 38, 813–818 (2006).
Chen, Y., Spitzer, S., Agathou, S., Karadottir, R. T. & Smith, A. Gene modifying in rat embryonic stem cells to provide in vitro fashions and in vivo reporters. Stem Cell Rep. 9, 1262–1274 (2017).
Brinkman, E. Ok., Chen, T., Amendola, M. & van Steensel, B. Straightforward quantitative evaluation of genome modifying by sequence hint decomposition. Nucleic Acids Res. 42, e168 (2014).
Patch, A. M. et al. Complete-genome characterization of chemoresistant ovarian most cancers. Nature 521, 489–494 (2015).
Xie, C. & Tammi, M. T. CNV-seq, a brand new methodology to detect copy quantity variation utilizing high-throughput sequencing. BMC Bioinformatics 10, 80 (2009).
Shen, H. et al. Mouse totipotent stem cells captured and maintained by spliceosomal repression. Cell 184, 2843–2859 (2021).
Kaya-Okur, H. S. et al. CUT&Tag for environment friendly epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105–1111 (2009).
Trapnell, C. et al. Transcript meeting and quantification by RNA-seq reveals unannotated transcripts and isoform switching throughout cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative evaluation of enormous gene lists utilizing DAVID bioinformatics sources. Nat. Protoc. 4, 44–57 (2009).
Zhao, T. et al. Single-cell RNA-seq reveals dynamic early embryonic-like applications throughout chemical reprogramming. Cell Stem Cell 23, 31–45 (2018).
Peng, G. et al. Spatial transcriptome for the molecular annotation of lineage fates and cell identification in Mid-gastrula Mouse Embryo. Dev. Cell 36, 681–697 (2016).
Zhi, M. et al. Era and characterization of steady pig pregastrulation epiblast stem cell traces. Cell Res. 32, 383–400 (2022).
Wen, J. et al. Single-cell evaluation reveals lineage segregation in early post-implantation mouse embryos. J. Biol. Chem. 292, 9840–9854 (2017).
Nakamura, T. et al. A developmental coordinate of pluripotency amongst mice, monkeys and people. Nature 537, 57–62 (2016).
van Leeuwen, J., Berg, D. Ok. & Pfeffer, P. L. Morphological and gene expression modifications in cattle embryos from hatched blastocyst to early gastrulation phases after switch of in vitro produced embryos. PLoS ONE https://doi.org/10.1371/journal.pone.0129787 (2015).
Pérez-Gómez, A., González-Brusi, L., Bermejo-Álvarez, P. & Ramos-Ibeas, P. Lineage differentiation markers as a proxy for embryo viability in farm ungulates. Entrance. Vet. Sci. 8, 680539 (2021).